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S UMMARY

Piezoresistance stress gages have been extensively used for measuring

dynamic stresses both in laboratory and field applications. A review

of the past work shows that these gages, because of their adaptability

to a wide range of stresses and times and their survivability in severe

environments, provide a unique measuring system. However, the interpreta-

tion of the data for loading conditions deviating significantly from the

laboratory calibration experiments is questionable. Also, the gage

response in laboratory calibration experiments is not well understood.

The goal of this research effort was to develop an improved understand-

ing of piezoresistance gages and to model their response to applied

loads to permit improved stress measurements. The work focused on

analytic developments, with a few experiments performed in support

of the analysis. Specific attention was given to the mechanical interac-

tion between the gage and the matrix.

First, a phenomenological model was formulated to calculate the

resistance change of a gage element subjected to mechanical deformation.

This formulation incorporates the tensor nature of piezoresistivity,

elastic-plastic response of the gage to include mechanical and electrical

hysteresis, and dimensional changes. The resistance change expression

derived herein is markedly different from the empirical relationship

currently used to interpret gage data. This expression points out

the importance of knowing the strain states in the gage element and

the material constants for the gage. The difficulty of inverting the

gage data to determine a particular matrix stress component is also

indicated.

Second, past laboratory shock wave data on Manganin and ytterbium

were analyzed in terms of the phenomenological model. The stresses and

strains in the gage element, needed for this analysis, were approximated

using an approach similar to that of Barsis et al. (Ref. 17). For

analysis of these data, the normal stress was assumed to be the same as

in the matrix and strain states were assumed to be either one-or
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two-dimensional. The results showed that the phenomenological model was

necessary for understanding the piezoresistance response under shock

loading and for reconciling shock data with data from other loading

conditions. The importance of gage plasticity in modeling the gage

response was demonstrated. There are, however, many aspects of the

experimental results that cannot be explained by the approximate analysis:

Manganin data for a wire and a foil (with similar hydrostatic response)

cannot be explained by a single set of parameters, hysteresis corrections

cannot be easily incorporated, and the role of matrix stresses and

strains on the gage response cannot be determined. These difficulties

have pointed out the need for rigorously determining the stresses and

strains in the gage element, and the material constants required in the

phenomenological model.

Third, a few experiments were performed on ytterbium to examine the

role of some important mechanical variables, and to provide data for the

subsequent gage-matrix interaction analysis. These experiments examined

the effect of (1) rotation of matrix stresses, (2) varying the strain

states, and (3) shear loading on the gage response. The latter two set of

experiments revealed some interesting results, but they are inconclusive

because of lack of experimental reproducibility. The effect of shear

loading should be reexamined in future work. The matrix stress rotation

experiments showed that the gage response is governed mainly by the stress

component normal to tile major surface of the foil. These data showed that

gage calibrations for one gage orientation with respect to the matrix

stress field cannot be applied to another orientation. Also, the results

for the rotated orientation (rotated through 90' from the usual orienta-

tion) could not be analyzed because the foil stresses and strains in this

case could not be easily related to the matrix stress or approximated

from simple geometrical constraints.

Finally, to rigorously determine the stresses and strains in the gage

foil, the foil was modeled as an inclusion in the matrix and then the

corresponding boundary value problem was solved. The foil was modeled

as an elliptical inclusion and Eshelby's technique (Ref. 48) for elastic

elliptical inclusions was used to determine the stresses and strains.

2



The results of the matrix stress rotation experiments were selected to

check the analytic solution. The results showed that the elastic inclusion

solution was not appropriate for modeling the gage response. Hence, the

Eshelby method was modified to include an elastic-plastic inclusion and

to obtain solutions for loading and unloading. This procedure gave good

agreement with the data. Thus, the main result of this work is that the

elastic-plastic inclusion solution in conjunction with the phenomenolo-

gical model can explain the response of piezoresistance gages to mechanical

loading. The gage-matrix interaction analysis rigorously shows why the

gage response in the usual shock wave experiments is dominated by the

normal stress as assumed in the empirical relationship. The theoretical

solutions show many interesting features during the elastic-plastic tran-

sition and upon unloading, and should be compared with experimental

results over a wide range of stresses. Effect of the foil aspect ratio

can also be determined with this analysis.

In conclusion, the objectives of the present study were successfully

completed. The response of piezoresistance gages to mechanical loads

can now be explained and modeled with a phenomenological model. However,

further work is needed to determine the material constants for the model,

to quantitatively account for gage hysteresis, and to quantitatively

confirm the present work over a wider range of loading conditions.

Specific recommendations for using piezoresistance gages in complex

loading situations are presented.
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SECTION 1

1.1 MOTIVATION AND OBJECTIVES

Characterization of dynamic stresses/loads in geologic media and

around structures is an important and continuing requirement for DNA
1-3

programs both in laboratory and field applications. Ascertaining

material and structural response, improved development of material models,

and verification of code calculations require reliable stress measurements.

Because of their adaptibility and survivability, piezoresistance gages

are used extensively for stress measuremnts. 4 These gages are unique

because of the stress range (I I a-lO0 GPa) and time range (20 ns-static
5

loading) over which they can be used. Gage usage is based on an

empirical relationship between the resistance change and one stress

component obtained from a laboratory calibration experiment along a

particular loading path (uniaxial strain). However, detailed examina-

tion of the theoretical relationship between the resistance change and

mechanical loading (discussed in Sections 1.2 and 2) shows that

piezoresistance gage response is more complex and denends on several

variables; therefore the current interpretation of gage data for loading

conditions deviating significantly from the laboratory calibration is ques-

tionable. Cross-checking with other gage types and/or numerical calculations

is not satisfactory because these results are themselves prone to error

(particularly in field data). To increase confidence in the use of

piezoresistance gages and to develop better gage packages, we need

to develop a more fundamental understanding of piezoresistance gage

response. Specifically, this approach is needed to determine the

accuracy in using these gages, in resolving differences between field

data, and in making better stress measurements under conditions of interest.

The goal of the present work was to attain an improved understanding

of piezoresistance gage measurements by performing well-defined

analyses and laboratory experiments. An important aspect of the present

work was to focus attention on the mechanical interaction of the gage

with its surroundings. This problem, though useful for all gage types,

9



has received little attention in previous studies. Some specific objec-

tives of our work were as follows:

* Develop a phenomenological model for piezoresistance to
calculate resistance change under mechanical loading. Review
the literature and analyze the past data in terms of this
model.

* Experimentally determine the role of matrix stresses, shear
deformation, and strain states in the gage on the gage response.

* Develop a theoretical analysis to examine the mechanical
interaction between the gage and the matrix material.

1. 2 BACKGROUND

In this subsection we briefly discuss piezoresistance gage usage,

review the past work, and summarize the findings. Instead of presenting

a chronological review of the past work, we discuss related previous

studies in analyzing the working of a piezoresistance gage. Hence,

not every paper on the subject that is known to us is included in the

discussion. However, the literature cited is sufficiently comprehensive

to provide a good state-of-the-art review.

The resistance of a conductor can be written as

R = -_
A (1.1)

where p is the resistivity, k is the length, and A is the area of cross-

section normal to the length Z. The vector nature of R and the tensor

nature of p have been intentionally suppressed for the present. The

conceptual basis for using piezoresistance gages to measure stress

is based on relating the change in resistivity (p) of the gage to

applied stresses. We emphasize, for later discussion, that the experi-

mental measurements consist of measuring resistance (R) and not

resistivity (p) changes. Therefore, the term 'piezoresistance' is more

aporopriate than 'piezoresistive' to denote these gages.

The inability to directly measure resistivity causes many of the
difficulties in complex loading situations.

10
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The use of piezoresistance gages dates back to the high pressure
6

work of Bridgeman and others at the turn of the century. Bridgeman

was also the first to formulate the tensor nature of piezoresistance

measurements. 7 Since then, these gages have been used routinely in
8

high pressure studies to monitor hydrostatic pressure. In addition,

an understanding of piezoresistive phenomenon, particularly in semi-con-

ductors, in terms of the band structure of solids has been an area of

interest to solid state physicists.9 ,10 Because the present work is

concerned with gage response for application to stress measurements, we

will use a purely continuum approach in our discussion.

The first attempts to develop piezoresistance transducers for
* ii

dynamic loading appear to be those of Hauver, who measured

resistance changes in shocked sulphur. Subsequently, in 1964, Fuller

and Price, and Bernstein and Keough reported piezoresistance measurements
12,13

for Manganin wires under shock loading. 1 In these and subsequent

studies, the principle for using these gages can be summarized as

follows: In a calibration experiment, the resistance change of an

element (contained) in a matrix is measured as a function of a

specific stress component in the matrix.' By repeating the measurements

for several stresses, we can write the following empirical relationship

AR (1.2)
R n
0

where AR = change in resistance

R = original resistance0

a = peak longitudinal stress in the matrixn

K = empirically determined constant that is generally a function

of a
n

The development of piezoresistance transducers for dynamic loading

was a direct outgrowth of the high pressure work.

tMost calibration data are based on shock wave uniaxial strain experi-

ments and the stress component is the longitudinal or normal stress
component. Note, uniaxial strain refers to the state of strain in the

matrix.
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I
Once K has been determined, the gage measurement from an experiment

of interest can be used to determine on by inverting Equation (1.2).n

We point out that the use of piezoresistance gages in shock loading

is assumed to involve no stress wave phenomenon. The gage is like a

static probe that can respond rapidly to the stress states around it.

The differences between gage response under hydrostatic loading and

shock wave loading occur because of differences in the mechanical state

of the gage in the two cases.

Since 1964, many papers have been published on calibration of
14-19

piezoresistance gages. Most of the work has been on Hanganin

(nominal composition 84% Cu, 12% Mn, and 4% Ni) with a few studies on

ytterbium.2 0 ,2 1 Manganin, in contrast to ytterbium, has the advantages

that its resistivity is relatively insensitive to temperature, the

batch-to-batch material variability can be better controlled, and the

response is nearly linear (constant K) over a wide stress range.

Ytterbium gages have been primarily developed in the last 5 to 10 years

and their principle advantage over Manganin is their greater sensitivity

to stress. Therefore, Yb gages are preferable in the range 10 M Pa-

2.0 CPa. (The upper limit for using Yb is 3.0 GPa.) For stresses abovo

2.0 GPa, the resistivity changes in Manganin are sufficiently large

and the use of anganin is preferable because of the other advantages

cited above.

Under dynamic loading the most common usage of piezoresistance

gages has been in measuring longitudinal stress in shock wave uniaxial

strain experiments in the 1 to 20 GPa range. Even for this particular

Because of its low atomic weight, carbon is often used in stress measure-

ments in radiation deposition studies. Recently, these gages have been
used in conventional shock studies. 2 2 - 2 4  In our work, we focus on

Manganin and ytterbium because these are most commonly used. Other

materials that have been considered, but not pursued, as piezoresistance

gages are Li and Ca.25

12



loading configuration, many different calibration studies (determination

of K versus o ) have been reported. These studies have largely beenn

prompted by the need to calibrate the specific gage material and grid

configuration being used in a particular series of experiments. The

lack of a universal calibration (or a standard gage type) in prior work

is inefficient, but does not pose a conceptual difficulty in gage usage

for uniaxial strain experiments.

In recent years, there has been a growing interest in extending

the use of piezoresistance gages to loading conditions far removed from

the hydrostatic high pressure and/or tile shock wave uniaxial strain

configurations. This is particularly true for DNA field applications

and armor penetration studies. Unfortunately, extrapolating the gage

response (or calibration) to new loading conditions may not be simple.

The empirical procedure indicated by Equation (1.2) and discussed earlier

is satisfactory if the gage is used in a loading situation that closely

matches the calibration conditions. When the two do not match, the

empirical calibration studies are of limited use in extrapolating the

gage response. Because of the lack of an alternative, the uniaxial

strain calibration is commonly used for other loading situations

(e.g., divergent flow). In the following paragraphs we discuss the

factors that make it difficult to apply uniaxial strain calibration to

more general loading conditions and to invert the gage data under

arbitrary loading.

The calibration experiments measure resistance change and not

resistivity; thus resistivity and dimensional changes cannot be easily

separated. If, in the experiment of interest, the dimensional changes

are significantly different f- m the calibration experiments, then it is

difficult to account for them. One potential solution that has been

suggested is to use a nonpiezoresistive material to obtain a measure

of purely dimensional changes in the experiment of interest. 26 This is

an interesting concept that needs to be further examined theoretically

and in well-defined experiments. This concept is discussed further in

Section 2.3.

Some of the discussion presented here uses concepts that are described
in Section 2.

13



The function relating resistivity changes and stress, in general,
27

is not a scalar but a fourth-rank tensor. For isotropic materials

(wich describe all the polycrystalline materials of interest), there

are two independent constants similar to Lame's constants in elasticity.

Also, for applications to high stresses the nonlinear form of these

constants needs to be included. Without a knowledge of the complete

set of constants, it is not possible to invert the resistivity measure-

ments to determine the corresponding stresses. In fact, the tensor nature

of piezoresistivity raises the question: Is the response related uniquely

to only one stress component as is commonly assumed? This question is

considered in detail in this report.

The gage undergoes plastic deformation, which results in residual

resistance as is commonly observed in shock wave uniaxial strain data.

The hypothesis that this residual resistance is caused by the production

of lattice defects (the change in the stress-free resistivity) is
28 29

supported by studies on annealed and cold-rolled Manganin and Silver

foils. In Sections 2 and 3, we discuss another contribution to

residual resistance: mechanical hysteresis. This phenomenon, expected

to be important at low stress levels, has not been considered in previous

studies. Grady and Ginsberg reconciled their shock data on Yb with the

hydrostatic data by subtracting the resistance that remained after
30

unloading from the peak value. Steinberg and Banner proposed an ad-hoc

method to account for resistance hysteresis by using a different cali-

bration for loading and unloading. 31 More recently, Vantine et. al.,

on the basis of a large number of experiments in Manganin, have presented
32

an empirical approach to account for the hysteresis. They present a

single relation for use during loading and unloading. The difficulty

with these approaches is similar to that in using Equation (1.2). As

long as the use of the gage is similar to the calibration conditions,

the correction may be adequate. However, for loading conditions that

deviate from the calibration conditions, the procedure will lead to errotr.

The magnitude of these errors depends on the loading conditions in ;i

particular application. A more fundamental approach is needed to

account for hysteresis corrections.

14



Finally, there is the question of gage-matrix mechanical *interaction.

(In actual usage the gage is generally contained in a thin film of epoxy.)

There are two main contributing factors: the gage shape and the difference

between the mechanical properties of the gage and the matrix. Calibration

studies on wires and foils with similar hydrostatic response give

different results under shock loading, demonstrating that the shape (or

at least large differences in the aspect ratio) can make a difference.16

We point out that most experiments are now done with foils. Whether

small differences in aspect ratio can make a large difference in

calibration is not known.I 17,30
Except for two papers, 1 the subject of actual strain states

in the gage foils has not been considered in past work. Even in these

two studies, simple strain states were assumed, as discussed in detail

in Section 3. There have also been attempts to vary the matrix material

and examine the gage response in uniaxial strain loading.1 6 The results

are inconclusive because of large scatter in the data. Although the gage-

matrix interaction problem can be neglected for uniaxial strain

applications with thin foils (because the calibration data are for similar

conditions), it may be very important for using a gage calibration from

one loading situation to a different loading situation. Our examination

of existing papers shows a general lack of gage-matrix interaction studies

in the use of piezoresistance gages. We point out that in field applica-

tions, there is an additional metallic encapsulation to facilitate

handling and to improve gage survival. In such situations the gage-matrix

interaction must include the influence of the metallic encapsulation.

Clearly, the response of piezoresistance gages to mechanical loads

is complicated. Although we have attempted to separate these complexities,

for an actual experimental situation they are coupled, making the inversion

of the gage data difficult., In fact, it can be questioned whether these

gages can ever be used with a high degree of accuracy in testing

situations that deviate significantly from the calibration loading

conditions. Before taking such a pessimistic position, it is important

to examine the reasons for using these gages and to review the experimental work.

This is demonstrated rigorously later in this report.

15



The main reason for using these gages is their versatility and the

general lack of suitable alternative methods for stress measurements.

Although piezoelectric or diaphragm (strain gages) gages can be used

for a specific situation, they are far too restrictive compared to
2 .5,19

piezoresistance gages. Studies at SRI have shown that with special

care, piezoresistance gages can be used for stresses as low as I MPa and

as high as 100 GPa. The lower limit is with Yb gages and the upper

limit is with Manganin gages. No other gage type even approaches this

stress range.

In addition to the wide stress range of usage, the piezoresistance

gages can be used over a wide range of time scales. By using thin

gages, it is possible to achieve time resolutions of 20 ns in shock

wave experiments. On the other hand, the same gages can be used for

static loading situations. Even in field applications, measurements

approaching static time scales have been obtained by suitable design

of gage packages and allied instrumentation. Piezoresistance gages

have also shown good survivability in fairly severe environments.
4

Because of the adaptability to a wide range of stresses, times, and their

survivability in severe environments, we conclude that piezoresistance

gages provide an impressive and unique measuring system.

In summary, the work to date has shown that piezoresistance gages

are uniquely suited for experimental measurements, but that the

interpretations of the data and error estimates are questionable

because of the many complexities. These deficiences are recognized by

workers in this area and the approach to date has been to minimize them

by optimizing gage designs. For example, gage packages are designed

and emplaced so that a particular component of stress (most often

stress normal to the gage) has the largest contribution; strain compensa-

tion to correct for dimensional changes in divrrgent conditions have

been attempted. These techniques, though usetl ,_ and often necessary,

cannot always be analyzed rigorously to provide quantitative estimates

of error. Except for two papers, 1 7 '30 discussed further in Section 3,

theoretical work in this area has been lacking. To make optimal use of

16

• -k I . w r
L

"5 I



piezoresistance gages, theoretical analysis and developments are

needed to supplement the experimental innovations.

1.3 APPROACH

To facilitate our discussion of the approach, we divide the investi-

gation on piezoresistance gages in to two parts: (1) the direct problem,

that is, determining the resistance change due to applied mechanical

loads, and (2) the inverse problem, that is, determining the state of

stress (or a specific component of stress) from resistance change measure-

ments. In this report we focus mainly on the direct problem. If we can

determine and model the resistance change due to applied loads and

separate out the contributions of the different phenomena discussed

in the last subsection, we can attempt to invert gage data in a particular

situation. Although inverting the gage data in a completely arbitrary

situation may never be possible, the work presented here should aid in

the design of gage packages to permit inversion of resistance change

measurements in specific situations.

To solve the direct problem, we first develop a continuum piezoresistance

model to relate the resistance change to mechanical loading. The past

data are reviewed and analyzed using this phenomenological model to

determine how and why the gages work and to identify the shortcomings in

previous studies. A few well-defined experiments are described to

examine the role of some key mechanical variables and to provide data

for analysis. A theoretical analysis is presented to examine the mechanical

interaction between the gage and the matrix. This analysis is checked

against experimental data to determine its validity and usefulness.

A brief discussion of the implications of this work for the inverse

problem is also presented.

17
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Section 2

MODEL FOR PIEZORESISTANCE

This section describes a phenomenological model to calculate the

resistance change in a gage element subjected to elastic-plastic defor-
*

mation. We can then examine how these relations may be inverted to

provide stresses from resistance measurements. The development consists

of incorporating plasticity in the piezoresistive relations presented by

Mason and Thurston 33 for elastic solids. Some aspects of the work are

similar to the developments presented in References 17 and 30; these

papers are discussed further in Section 3.

Figure 2.1 shows an initial undeformed and a deformed configuration

for the gage element. Our objective is to relate the resistance change

between these two states--that is, to obtain expressions for resistivity

changes and dimensional changes while simultaneously satisfying the

mechanical constitutive relation. Throughout this work, we will assume

material isotropy. The relations are in the incremental form and can

therefore be used for large strains.

2.1 RESISTIVITY CHANGE DUE TO DEFORMATION

33
Mason and Thurston presented the phenomenological development of

piezoresistivity for elastic solids by considering the electric field Em
as a function of the current density J and stress a.. This development

m 13
is similar to other equilibrium and non-equilibrium processes that are

27
based on a tensor formulation of the crystalline properties. To extend

this approach to elastic-plastic deformation, we proceed as follows.

The resistivity tensor and its components are defined using the

generalized Ohm's law

Ei im I m (2.1)

At present, we restrict our work to purely mechanical deformation and
ignore thermal effects.

'Unless otherwise stated, we will use the summation convention and assume
tensile stresses and strains as positive.

18



elastic + plastic strains

Stes
pltrtsc elasticFree unloading

MA-8324-15

FIGURE 2.1 THE RESISTIVITY CHANGE APijIN THE DEFORMED STATE

The stress-free state is a hypothetical state obtained by removing

all stresses (or elastic strains).
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For cubic and isotropic materials, the resistivity , is a scalar:

's., where . is the Kronecker delta. The resistivity in the deformed0 ira" im
configuration can be written as

o i. = I . + A'). (2.2)Im o IM im

By considering the resistivity as a function of elastic strains (or

stresses) and plastic strains, we can write

i,.= [(, i) k +( in N ' P (2.3)

e + ,

in in

im -1im

in the above expression, the partial Cerivatives imply that the other

variable is being held constant. The first term represents the change

in resistivity eue to stresses (elastic strains) and is reversible if

the stresses are removed. The second term represents an irreversible

change in resistivity that is caused by production of lattice defects

in the solid. For example, the second term is responsible for changes

in the resistivity between an annealed and cold-worked material.

For discussing hysteresis later in this work, it is useful to define a

stress-free state corresponding to the deformed configuration (Figure 2.1).

The resistivity in this state can be expressed as

im o in o in (2.4)

Note that the stress-free resistivity is taken to be a scalar in agreement

with our assumption of material isotropy.

in all of our work the term piezoresistivity applies only to the
e *

elastic term in] This elastic component of the resistivity change

Because plastic strains are also present, there is confusion in the shock
wave I iterature. In the papers by Smith, 9 and Mason and Thurston, 3 1 only
elastic solids were considered and the difference between strains and
stresses was inconsequential.

20



is expressed as

i(2.5)S oi j k k,

where the coefficients Hj are the appropriate partial derivatives fromijk

Iq. (2.3) and are components of a fourth-rank tensor termed the piezoresis-

t iv tensor. This tensor is similar to the compliance (or stiffness)

tensor in elasticity as far as the nonzero and independent terms are con-

cerned. There is, however, one major difference: Whereas elastic constants

tend to be independent of the lattice defect density, the same is not

true for the piezoresistive coefficients. Piezoresistive coefficients

depend on heat treatment (e.g., annealed and cold-rolled foils have

different coefficients).

Equation (2.5) is the fundamental relation underiying the use of

piezoresistance gages for stress measurements. For cubic material, there

are three independent components: N1 1 , H 12' and 4. Here we have used
44*

the matrix notation and Equation (2.5), in this notation, is written as

\e = k, 11 • 0 (2.5a)
m o mn 11

where the subscripts range frnm I to 6 and the complete piezoresistive

matrix is written as

T I 2 0 0 01

11 12 0 0

: 0 0 0

Mi 11 (2.6)
6n 1144 0 0

414- Z'4 0

4:4

For the present work, the interest is in i sot rmi c mater ia Is and there

are only two independent components 1 hecalsk 4 I I
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For isotropic materials, it is convenient to write Eq. (2.5) similar to

Hooke's law

e .

A0 p o mm . 'ij +  2E'.',o 31 (2.7)

The constants A and r are material constants similar to Lame's constants

in elasticity. These constants can be obtained by measuring resistivity

changes due to applied stresses in the elastic range.

The plastic component of the resistivity change is written similar

to Equation (2.5)

,o = A, Wp  6. (2.8)A im 0o Im

where Wp is a scalar measure of plastic deformation and t) is a material

constant relating changes in plastic deformation (at constant stress) to

resistivity changes. Two possible scalar measures of plastic deformation

that may be used are

AW
p  = o..Ac

p

i3  ij

or =. ".
r I p  

1/2 (C.p . iJ

The first measure is the plastic work and the second is the second

invariant of the deviatoric plastic strain. At present, we do not know

of any data for piezoresistance gages that can be used to evaluate Equation

(2.8).

Combining Equations (2.7) (2.8), and (2.2), we can write the resis-

tivity in the deformed state as

.. = o ij + k0 j\lmm , + 2, + Aw p, i (2.9)

Equation (2.9) can be used to determine the resistivity change for a given

mechanical loading, if the constants t, c, and n are known. 1le also point

out that the stresses appearing in Eq. (2.9), for a given deformation,

= 12' =(I] __12)/2
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must be compatible with the mechanical constitutive model discussed in

the next section.

The relations presented above are valid for large strains because

they are in an incremental form. By making o and 3 a function of stress,

we can include nonlinear terms. This procedure, thouph reasonable, is

an approximation to a nonlinear theory. In the nonlinear theory, higher

order terms in the Taylor's series expansion (Eq. 2.3) would need to be

included. Given the present state of the art, we feel that our approach

is adequate.

2.2 MECHANICAL CONSTITUTIVE MODEL

The resistivity changes due to deformation must be calculated in

conjunction with the mechanical constitutive model. For purely elastic

deformations of the gage, the plastic work term in Equation (2.9) goes

to zero and stresses are readily known from Hooke's law. However, for an

elastic-plastic response, the terms in the square brackets cannot be as

easily determined from a knowledge of strains and an inelastic consti-

tutive model must be considered.

Although several papers have reported the hydrostatic compressibility

of piezoresistance materials, little data exist on the yield and deforma-

tion behavior for these materials. Also, when these data exist, they

are of little value unless they are for the same material that was used

in impact calibration studies. This is because the yield data, unlike

compressibility data, are strongly dependent on impurities and heat

treatment. Given the general lack of needed data, we will assume the

simplest inelastic model: An elastic-perfectly plastic model. Work

hardening can be easily added if future data warrant such an addition

to the model.

The equations presented below are the usual textbook relations used
34

for metal plasticity. Stress is separated into deviatoric and spherical

components
-mm

Oi = 0.. + -6 i
ij ij 3 iJ
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Because these gages can be subjected to large compressive pressure P

(- /3), we express the pressure-volume relation as
mm

P = Ao + rq i

where i = D/D - 1. D is the density and A and B are material constants.
0

Using the usual procedure for metals, we include all the inelasticity

in the stress deviators. The equations in the incremental form are

(1) Additivity of elastic and plastic strain increments

A ,,.., = A e.. + ,f 1)
ij 1 ,j ij

(2) Hooke's law for elastic strains

A,: = 2GAt. "
ij i

(3) Yield surface of the von-Mises type

f = J -Y = 0

where
-I

"12 2 ij "('ij

Work hardening can be included by making Y a.,function of plastic work

W or plastic strain P... In accordance with the last subsection, Yp 11
also marks the onset of resistive hysteresis.

(4) Plastic Incompressibility

A, P 0.
mm

Appendix A presents the elastic-plastic relations for some simple

situations used in Section 3: One-dimensional strain ( #0, , = = 0)y x z

and a particular two dimensional strain (, = , 0 0, != 0). Forx y z
arbitrary loading conditions, the imposed strain field in conjunction

with our material model provides the stresses. These stresses in turn

provide the resistivity change through Equation (2.9).

24
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The e last ic-p lastic response of t he gage is a I so respons i Me for

the residual resistance (or gage hysteresis) observed in experiments.

This hvsteresis can have two cont rib ut ions (1) changes in the stress-

free resistivity caused by the generation of lattice defects--that is,

permanent resistivity changes, and (2) mechanical hysteresis--that is,

residaual stress and strains in the gage due to plastic deformation.
o I

Previous work has attributed all of the hvsteresis observed in shock

wave experiments to changes in the stress-free resistivity. This is in

error, particularlv at low stresses, where the mechanical hvsteres is

contributions can be qu, ite large. This topic is dis cussed further in

Section 3.2.

2.3 USE I N EXPERI MENTS

In this subsection, we present the retations relating resistance

changes to the imposed deformation. To aid writing the relations, we

introduce the following nomenclature. We define a right-handed coordin-

ate system (fixed on the gage element) such that the X axis is along the

gage width, the Y axis is along the gge thickness, and the Z axis is

along, the gage length. ALI variables of interest will be transformed

to this system.

In accordance with the experimental measurements, we will alwa's

consider the electric field E and the current density .J along the gage

length. The choice of coincident electric I ield and current vector

eliminates any shear stress contribution to Ai ... The resistance

along the Z direction is written as

Z " Z
. . ..... (2.110)

where IZ 'ZZ Z= gage length, and AZ  arca oif cross section normal to

the Z-direct ion. Denot ing the variabt s in th li i til statL' with the

If the only resistivity changes of interest are AI, AI , A. then
the form of the I-matrix in Equation (2.6) does not permit contributions
from , .(i # .j).

No summation convention will be implied with capitalized stibscript6.

25
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subscript '0', we can write the resistance in the deformed state as

.z Az

RZo PZ e Zo AZ (2.11)

Substituting for ApZ from Equation (2.9) and defining the dimensional

contributions by

A1 10At ° -

11

We can write Equation (2.11) as

R / +NZ
R f + ,X(o + AOY+ A(J Z+2) ( + flAIPj (+_) (2.12)

Equation (2.12) is the general relationship between the mechanical deformation

and the resistance change meastred by the gage. In the small strain

approximation, the incremental quantities in Equation (2.12) can be replaced

by their total values. In the remainder of this report, we have used

this approximation.

Equation (2.12) shows the importance of knowing the strains in the

gage element. A knowledge of these strains coupled with the constitutive

model, permits the determination of stresses and hence the resistance

change. We emphasize that the stresses and strains in Equation (2.12)

are those in the gage element and not in the matrix. This point has not

always been appreciated in past work 3 5 and is discussed further in

Section 5.

In using piezoresistance gages, the objective is to invert the

resistance measurement to determine a particular stress component in the

matrix. From Equation (2.12) we can see that inverting the resistance

change data is not a simple task. This then raises the question: How

can the simple empirical relation given by Equation (1.1) be used when

26
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the actual response (Eq. 2. 12) is so complex? The resolutioll to this

question ties in tile gage shape, gage plasticity, and tile nature of the

shock wave uniaxial strain experiments. In Section 5, we show that for

a thin foil gage in a matrix subjected to uniaxial strain, the respolse

is determined primarily by the normal stress in the matrix. Thus, the

gage can be used to measure normal stresses provided the matrix is tinder

uniaxial strain. This simplification is not possible in general.

To invert Equation (2.12) for an arbitrary loading condition requires:

several gage measurements, knowledge of the various constants, and an

independent determination of the gage strains. Determination of n, t),

and the yield stress, although involved, can be made from well-defined

laboratory experiments. On the other hand, the determination of strains

is conceptually difficult because it depends on the specific situation

of interest (the gage-matrix interaction problem).

Independent measurements of strains have been considered in previous

work 2 6 , 3 5 to correct for dimensional changes in divergent flow conditions.

Using the developments presented in this section, we can examine the

requirements for using nonpiezoresistive materials to independently

monitor strains: (1) The material used for measuring strains should he

mechanically similar to the piezoresistance gage material and should be

placed similarly to the gages (see gage-matrix interaction in Section

5), (2) the coefficients a and should he zero to ensure that stresses

or elastic strains do not result in resistivity changes, and (3) the

coefficient ri, relating stress-free resistivity to plastic deformation,

in the two cases should be similar. These requirements are quite restric-

tive and point out the difficulty in accurately correcting for dimensional

changes.
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SECT ION 3
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[*

completely contained in C-7 epoxy. Above 30 kbar, both sets of data

are in good agreement and are approximately parallel to the hydrostatic

line. Below 30 kbar the data have no clear patterns.

Barsis et al. appear to be the first investigators to consider a

piezoresistivity tensor analysis for shock wave data. They also made

the first quantitative attempt to explain the nonlinear K - a datan

shown in Figure 3.1(b) and to reconcile the shock wave data with

hydrostatic measurements. The equation used by Barsis et al. to

analyze their data is similar to Equation (2.12) with the following

exceptions: (1) In their work they do not consider changes in stre's-

free resistivity; that is, the Wp term in Equation (2.12) is taken to

be zero; (2) they choose to express their piezoresistive equations in

terms of total strains; that is, instead of Equation (2.9), they use the

following equation

r.. = r . 6.. + 2r + r (3.1)
0 0 ij Am

where r ij is the resistivity. r V and r are like v and 1 in our work.

We believe that Equation (3.1) is incorrect because the resistivity

changes are caused by stresses (or elastic strains) and not total strains.

For example, if a conductor undergoes stross-free deformation, its

resistivity cannot change. As discussed below, we can simulate their

analysis and results by setting and n equal to zero in Equation (2.12).

Also, m = C in Equation (3.1) because of assumed plastic incompressi-
mm mm

hility.

A key aspect of the work by Barsis et al. was recognizing the

importance of strain states in the gage and then attempting to account

for them in the analysis. They analyzed their shock data assuming one-

and two-dimensioral strain states in the gage. They argued that the two-

dimensional strain state ( = t# 0, = 0) was a better representation

x y z

We remind the reader that a refers to the stress in matrix.
n

tChanges in stress-free resistivity due to the Wp term in Eq. (2.12) are
not considered in the work by Barsis et al.
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of the gage geometry and differences in the Manganin and epoxy impedances.

Their analysis was based on using r = 0 (similar to assuming = 0 in

our work). By assuming a two-dimensional strain state, they reconciled

their shock and hydrostatic data and fitted the nonlinear response

indicated by their data (Figure 3.1b).

We have analyzed the data of Barsis et al. and Lee's data using

Equation (2.12). We emphasize that our procedure parallels the analysis

by Barsis et al. because we assume = 0 and q = 0. The analysis consisted

of the following steps.

(1) The hydrostatic resistance data are converted to resistivity

using the Manganin pressure-volume relation
1 7

P = 1160 vi + 4120 2 (3.2)

where ji = D/D - 1 and P is in kbar. Appendix B shows how
O

the dimensional term in Equation (2.12) can be expressed in

terms of density changes.

(2) The resistivity-pressure data were used to obtain , (P)

4 -4
= - 7.042 x 10 (1 + 1.564 x 10 P) (3.3)

(3) Using a(P), 0 = , 0 = , the resistance change can be

computed from Equation (2.12) provided the stresses and

strains are known. The normal stress in the gage is assumed

to be the same as the matrix. By assuming a particular strain

state, we can then calculate the other stresses (Appendix A).
17

The yield stress (Y0 ) used in these calculations is 2 khar.

Figure 3.2 shows the calculated curves for one- and two-dimensional

strains and the data from Figure 3.1(b). The agreement between the two-

dimensional strain curve and the data of Barsis et al. merely confirms

their result. However, the data of Lee agree better with the one-

dimensional strain curve. This is difficult to explain because the wire

geometry used by Lee more closely approximates two-dimensional strain

than the geometry used by Barsis et al.

Because of the large length (compared to width and thickness), there is
no strain along the gage length. In the other two directions, the gage
is compressed equally because Barsis et al. treat the epoxy llk, a fluid.
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FIGURE 3.2 COMPARISON OF EXPERIMENTAL DATA ON MANGANIN
WITH ELASTIC-PLASTIC CALCULATIONS

The 1D and 2D strain states refer to the assumed state of strain
in the foil.
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Figure 3-2 clearly shows the importance of gage plasticity oil

resistance change. However, at stress levels in excess of 50 kbar, the

one- and two-dimensional strain differences become negligible and the

behavior is similar to hydrostatic response except for an offset. The

results presented in Figure 3.2 have an inherent error because resistance

hysteresis was not taken into account either in the experinental data or

in the analysis. The papers by Lee and Barsis et al. mention the observa-

tions of resistance hvsteresis, but do not report any resultrs. ThL'

results in Figure 3.2 are discussed further in Section 3. 3.

3.2 ANALYSIS OF THE YTTERBI UM DATA

Ytterbium gages have been extensively studied under shock loading
21

by Ginsberg et al. Resistance change measurements under hydrostatic
loading have been reported by Lilley and Stephens. 3 1 tle work by

Ginsberg et al., the gages were encapsulated in epoxy-fiber glass sheets

and the gage packages were then shocked in a variety of matrix materials.

By conducting impact experiments at various velocities, these authors

obtained the resistance change for different stress levels ranging

between 50 MPa and 3 GP-,. Their calibration data are shown in Figure 3.3(a).

In addition, these authors have also presented the residual resistance

(upon longitudinal unloading in the matrix) as a function of peak stress,

as shown in Figure 3.3(b).

30
(;r-dy and Ginsberg have presented an analysis of their resistance-

stress data using the relation

AR.
_- -_ = ii o + C. (3.,i)

R im m in n0

where the matrix notation (m and n range from 1 to 6) is used for stresses

and strains. Because the current and the electric field vectors Ire

coincident, i values ranging between only I and 3 need to be considered.

are the piezoresistive coefficients and G is a matrix nsed to write

the dimensional terms in a compact notation.
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FIGURE 3.3 YTTERBIUM DATA FROM GINSBERG et. al. (Ref. 21)

(a) Resistance change as a function of peak stress.
(b) Residual resistance as a function of peak stress.
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Equation (3.4) is identical to (R /Rzo - 1) obtained from Equation (2.12)

if n is set equal to zero.

,

Assuming a one-dimensional state of strain in the ytterbium, Ginsberg

and Grady obtained the following results:

(1) Using Equation (3.4) they analyzed resistance change data in
36

the elastic range under hydrostatic and tensile loading to

obtain 711 and n 12' These in turn were used to correctly

predict the uniaxial strain data at low stresses (elastic region)

and provided further confidence in the 7-values.

(2) They extended their elastic resistance-stress calculation into

the plastic region by arguing that beyond yielding, the deforma-

tion of Yb is hydrostatic. Thus, hydrostatic data for resistance
36

change can be directly used to extend their theoretical curve

to higher stresses.

(3) They showed good agreement between their theoretical curve

(step 2 above) and shock data by subtracting the measured

residual resistance [Figure 3.3(b)] from the resistance change

at peak stress [Figure 3.3(a)].

Grady and Ginsberg concluded that hydrostatic and shock wave data

in Yb can be explained by assuming a one-dimensional strain state, using

a piezoresistivity tensor analysis and subtracting the residual resistance.

Unfortunately, steps 2 and 3 are in error. Step 2 is incorrect because

the procedure used by the authors is valid for resistivity changes and

not resistance changes. The dimensional term is different during hydro-

static and uniaxial strain compression, as discussed in Appendix B.

Step 3 is incorrect because not all of the residual resistance is
caused by changes in the stress-free resistivity (referred to as plastic

resistivity change in Section 2). Some residual resistance is expected

These authors argued that the compressibility of the epoxy-fiber glass
composite was similar to the ytterbium.
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from purely mechanical hysteresis. The residual resistance shown in

Figure 3.3(b) is for zero longituldinal stress. The other stresses are

not zero and they contribute to the resistance chnL,, through Equation

(2.12) . Appendix C explains how these values can he calculated. heri.

we simply present the results: For a peak stress of 2 kbar, tile residial

resistance due to nonzero stresses and strains coOntributes 757' to

tilt residual resistance; at 4 kbar peak stress this contribution drops

to 41'. W ith increAsing stress, the contribution of pure Iv mechanicaIl

livsteresis to resistnce change decreases and til' ch;i e in stress-f ree

resist ivity becomIes more important. This is because tile residual stresses

are limited by tile magnitude of the yield stress.

'e have reanalyzed the data of Ginsberg et a]. using Eqtution (2.12)

in A manner similar to that used for the .anganin data in the last sub -

section. The fol lowing procedure was used

(1) The resistance change data tinder hydrostatic pressure were

chlnged to the resistivity data using the following fit to the
37

pressure-volume data ol Yb.

P = 146.65 ui + 122.0j (3.5)

where i = I/D - I and P is in kbar
0

(2) Ilce res ist iv itv-pressure data were used to obtain ( )

- - 0.02 - 7.24 x TO-4i (3.6)

where we have assumed 3 = 0. For Yb, tile choice of (I is

supported hv tice values of i: and 112 reported h' Gridy and
30 

r r b d

Ginsberg. (Note, their analysis is valid in the elastic

range.) Whether this approximation is valid for higher

stresses is not known.

(3) Using t(P), V-) =  0, and rl = 0 in Equation (2.12), we can

calculate the resistance change provided the stresses and

strains are known.

P is positive in compression.

ice, use of = O in determinin i the theoretical valtlie is realsonable

since we are going to approximatelv correct for this in the experimentall

datai.
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Figure 3.4 shows the calculated points of K versus n by assumingn

one and two-dimensional strains in the ytterbium. The pressure-volume

relation used is given by Equation (3.5), and Y0 (the yield in simple

tension) was taken to be 0.6 kbar. The yield limits for one-and two-

dimensional strain states, corresponding to Y , can be calculated from

Appendix A. Figure 3.4 also shows the peak resistance change, peak

minus the total residual change (procedure used in Ref. 30), and the peak

minus the residual change consistent with assumptions of one-dimensional

strain and an elastic-perfectly plastic solid. The difference in these

latter two curves is due to the contribution of mechanical hysteresis;

the relative magnitude of this contribution decreases with increasing

stress. At low stresses, the one-dimensional strain calculation gives a

better fit to the data; at higher stresses, the two-dimensional strain

calculation gives a better fit to the data. At very high stresses, the

state of strain becomes less important.

3.3 Discussion

The analyses presented show that the theoretical model outlined in

Section 2 is necessary for understanding the shock response of piezoresis-

tance gages and for attempting to reconcile these data with data from

other loading conditions. The importance of gage plasticity in explain-

ing the nonlinearities in the experimental data is quite evident from the

comparisons between theory and experiment. The analysis of the ytterbium

data shows the difficulty in correctly accounting for the resistance

hysteresis.

A key aspect of the comparison between theory and experiment is a

knowledge of the stresses and strains in the gage itself. The differences

in the results for the assumed one-and two-dimensional strains are clearly

seen for low and moderate stresses. Because these differences are directly

related to gage plasticity, they are less important at very high stresses.

The choice of one-dimensional and two-dimensional strains in the analysis

Rigorously, even this procedure is incorrect because the subtracted
amount represents the plastic contribution upon longitudinal unloading
and not at the peak.
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is governed, in part, by the fact that these states are easy to analyze.

The exact state of strain in the gage is difficult to determine. Further-

more, in all of the analyses it was assumed that the normal stress

in the matrix was identical to the normal stress in the gage. Although

this assumption appears reasonable (if the gage is envisioned as a

thin planar sheet), it has not been rigorously demonstrated. We

speculate that violation of this assumption may explain, in part, the

differences between Lee's data
18 and the results of Barsis et al. 17

The cylindrical cross section of the wire gage used in Lee's work is

expected to be a larger perturbation to the matrix stresses than the

foil gage. Earlier work by Keough and Wong on Manganin wires and

foils showed that wire response in contrast to foil response was more
15

influenced by the matrix response. Section 5 discusses the question

of gage-matrix interaction in more detail.

The analyses presented provide insight into how these gages

work and how they can be used in an empirical manner for uniaxial

strain in the matrix. If the normal stress in the gage and the matrix

is the same, then the gage plasticity restricts the magnitude of the

other stresses for a given strain state. The onset of the plastic

response and the relationship between the various stresses is determined

by the strain state. The strain state, in turn, depends on the form of

the foil grid and the material surrounding it.

The continuity of normal stress can be assured by using a thin

foil (see Section 5 for rigorous proof), and the strain states can be

kept approximately identical in all cases by choosing a particular

grid pattern and surrounding it by a similar epoxy resin in each case.

Such a gage (or gage package) can then be calibrated and used in an

empirical manner (Eq. 1.1) for shock wave uniaxial strain experiments.

Irrespective of the matrix material, the gage response will then be

governed by only one quantity--normal stress in the matrix. The litera-

ture, shows that the gages are generally used in this manner. Because

of differences in gage material and gage fabrication, different

The use of wire gages should be minimized or eliminated.
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investigators have provided calibration data for their particular gage.

Selection of one grid pattern and a well-characterized gage material would

be highly desirable because it would eliminate the need for repeated

calibration studies.

We have not discussed gage hysteresis because it is expected to

be reproducible, since the gage response is governed by the matrix

normal stress. For using the gage only in uniaxial strain experiments,

the empirical procedure used by Vantine et al.,32 to account for

hysteresis may be satisfactory.

The above remarks apply only to the use of piezoresistance foil

gages in shock wave uniaxial strain experiments. If thes, glgk; olrt

to be used in more general loading situations, then their beavior ipcds

to be examined for those particular situations. The response to ::orc

general loading conditions cannot be directly extrapolated from sl.h, k

wave uniaxial strain data. This issue is considered in Sections 5 ii ,.
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Section 4

EXPERIMENTS ON PIEZORESISTANCE FOIL GAGES

The experiments were designed to determine the effect of well-

defined changes in mechanical loading on the gage response. The objectives

of the experiments were to: (I) determine the effect of stress rotation

in the matrix on gage response, (2) compare stress-resistance data in a

truly uniaxial strain geometry with conventionally used foil geometry,

and (3) determine sensitivity to shear deformation. These experiments

provide self-consistent comparisons and are not intended to provide

calibration data.

Ytterbium was chosen as the piezoresistance material because it

exhibits a large change in resistance at low stresses, thereby increasing

the measurement accuracy. There also exist considerable piezoresistance

and mechanical data for comparison with our experimental and analytic

results. Partially offsetting these positive aspects, however, is the

batch-to-batch variability in material texture and resistivity. As noted

earlier, Yb foils are not as reproducible as Manganin foils. We felt we

could eliminate this problem by comparing results from gages constructed

from uniform regions of one foil. We were not entirely successful, as

indicated by the results in this section.

In the impact experiments, the piezoresistance gage response is

related to the stress state in the surrounding matrix. Hence, it is

important that the matrix material be well characterized for loading

conditions of interest. Furthermore, the matrix material should permit

a good bond with the gage; that is, the measurements should nLL be perturbed

by intermediate layers of dissimilar material. To satisfy these requirements.
I

we chose Polymethyl Methacrylate (PIA) as the matrix material. The work

by Barker and Hollenbach has provided extensive, accurate uniaxial strain

We have used Yb foils from the same supplier, and with similar m.teriall
preparation, as that used in the work of Ginsberg et al. '21
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data on PMMA. More recently, the compression and shear wave studies

by Gupta3 9 have provided a complete determination of the stress-tensor

in PMMA under uniaxial strain loading. The knowledge of the complete

stress tensor is needed for an analysis of the results, particularly for

the experiments in Section 4.1.

In all of our experiments, the gages were embedded in the PMMA. The

general technique consisted of grooving the size of the gages and bonding

the gage by a thin layer of epoxy (Hysol 815, which closely matches PMMA).

The PMMA surface containing the gage was lapped to ensure that the

specimen and the gage surface were flush. PMMA blocks were bonded to

these surfaces using very thin Hysol bonds. Specific configurations

for each experimental type are described in the following subsections.

The experiments in 4.1 and 4.2 were conducted with the SRI 10-cm-diameter
40

gas-gun. The shear loading experiments in 4.3 were conducted with the
41

6.35-cm-diameter inclined impact facility.

4.1 ROTATION OF MATRIX STRESSES

Figure 4.1(a) shows the gage emplacement for stress measurements.

Gages denoted by 'I' have the configuration that is normally used in

shock wave experiments. For these gages the direction of shock propa-

gation is normal to the major surface of the foil. Gages denoted as
'2' are identical to the '1' gages, but are rotated 90' with respect

to the shock propagation direction. Thus, to an observer, in the gage

coordinate system, the matrix stresses for the two sets of gages appear

to have been rotated. By comparing the output rom the two sets of

gages, we can determine the effect of stress rotation on the gage

response.

An important aspect of this experiment involves the feasibility
,

of measuring lateral stresses in shock wave experiments. If the gage

An important limitation in existing shock wave uniaxial strain data is the
inability to determine the lateral stresses. This limitation is caused by
the absence of experimental methods to measure lateral stresses and by the
absence of lateral stress terms in the conservation equations describing
uniaxial strain flow. 4 2 Shock wave results are completely described by
the longitudinal stress-volume-energy (o -v-E) relation.

x
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FIGURE 4.1 EXPERIMENTAL ASSEMBLY FOR STRESS MEASUREMENTS

(a) Schematic view of unassembled blocks showing the four gages.

(b) Assembled target.
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*responds only to the stress component normal to its major surface, then

* gages denoted as '2' should measure the lateral stress in the' matrix.

We point out that the idea of using piezoresistance gages to measure

stresses other than the longitudinal stress is not new; the first attempts,

using Manganin wire gages, were those of Bernstein et al. 43 It is not

possible to analyze each experiment here in detail, but some general

observations and difficulties with the past work 4 3- 4 5 are summarized helow.

The use of wire gages is not appropriate because a wire elemlent

appears identical to the stress wave for both longitudinnl and lateral

stresses unless it is contained in a planar slab of another material.

In the contained situation, the in-situ nature of the measurements is

compromised and two-dimensional wave effects need to be examined. Two

of the previous studies 4 3 , 4 5 used Manganin, which gives appreciable

signals, only at high stresses. At high stresses, the matrix material

is difficult to characterize because of dynamic yield and failure. 'liiis

difficulty, coupled with the complex nature of the gage package, does
44

not permit a clear interpretation of the results. Stubbs et al.

examined the use of carbon gages to measure lateral stresses at low

compressive stresses ('\10 kbar). They corrected many of the problems

related to encapsu latLion techniques for lateral stress m1easuremlents and

qualitativ ly demonstrated the potential for measuring lateral stressts.

Quantitative evaluation of their work is difficult because of a lack of

independent stress determination in the matrix material, the uncertaint ies

in carbon gage calibration, and the difficulty in understanding the trot'

response of the gage because of the many layers of encapsulation of

materials in the gage package. The lack of an independent stress

determination in the matrix is particularly important because without

such a determination it is difficult to establish the validity of using;

a piezoresistance stress gage for lateral stress measurements. Previous

studies have not always appreciated this point and have reported latcrnl

stress measurements without appropriate demonstration of gage calibration.

In stmmary, given the complex nature of piezoresistance measuremnt: and

tLhe complexities indicated above, previouts studies have not unambiguous lV

demons tra ted the use of piezoresistaice gages for quantitativ e me.asurements

of lateral stresses.

44
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In our experiments we have avoided the above-cited difficulties by

embedding gages directly in PPthA, Specifically, the experimental procedure

was as follows. PMA blocks, shown in Figure 1(a), were accurately

machined to give flat and parallel surfaces (tolerances Z0.0025 cm).

The blocks were grooved to the dimensions (length = 25.4 mam, width = 2 mm,

depth = 0.05 mm) required for emplacing Yb gages. The gages were set in

the grooves using Eastman 910 adhesive at a few points and the very small

clearance around the gages was filled with a material that matches the

mechanical impedance of PMMA. After the gages were set in the PMI'A blocks,

the faces with the gages were carefully lapped to ensure that all gages

were flush with the PMlA surface. The blocks were then bonded together

using the filler material. An assembled target with the 4 four-terminal

gages is shown in Figure 4.1(b). The use of a rectangular foil without

encapsulating layers is in contrast to previous studies using encapsulated

grids.

Two experimental assemblies were constructed with two gages of each

type in each experiment. In the first experiment, the fi. l1Cr material
46

was PWIA powder dissolved in ethylene dichlioride solution. The ethylene

dichloride was also used for bonding the blocks. In the second experiment,

the filler and bonding material was Hysol 2038 epoxy res in. The change,

of the bonding material in the second experiment merely reflects experi-

mental convenience and is not expected to influence the conclusions drawn

from this work.

Projectile velocities were chosen to give a compressive stress

amplitude of 0.5 (,Pa in these experiments. At this stress level we have

independently established the magnitude of lateral (or deviator) stresses

for uniaxial strain in the PMMA matrix. Resistance chainge m, tlhods were

made usiug the usual four-probe measurements. In addition, ilmpact tilt

and projectile velocities were monitored. The resistance changes trom the

two experiments are shown in Figures 4.2(a) aud 4.2(b) respectiV'l' ad

the results, summarized in Table 1, are discussed next.
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FIGURE 4,2 RESISTANCE CHANGE DATA FROM THE TWO EXPERIMENTS

The data have been normalized to wave arrival times.
The higher amplitudes are from the gages measuring longitudinal stresses,
while the lower amplitudes are from the gages measuring lateral stresses.
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The resistance change data from the first experiment (Figure 4.2a)

showed considerable scatter. However, the differences between the two

sets of gages are quite marked. To reduce this scatter, we obtained the

four gages for tile second experiment from a small area of one foil. The

results of the second experiment (Figure 4.2b) indeed showed less scatter

and confirmed the results of the first experiment. Table 4.1 gives tile

ratio of lateral and longitudinal stresses in the matrix and the me;surc't

resistance change ratio from the two sets of gages. Within experimental

scatter these values agree, suggesting that resistance changes are governed

by the stress component normal to the major surface of the foil. More

work needs to be done to improve experimental precision and to extend the

results to other stress amplitudes.

Although the resistance change ratio measured here agrees with the

expected stress ratio, it is difficult to reconcile this result with the

calibration data for Yb shown in Figure 3.3. Those data show a nonlinear

resistance change above 0.1 GPa. From tile measured resistance change

ratios shown in Table 4.1, we obtain stress ratios ranging between

0.71-0.73 using the calibration data of Ginsberg et al. These values

are higher by about 20% in comparison with the calculated values. The

point to be made here is that tile calibration data for one orientation

cannot be directly used for gage measurements along a different orientation;

separate calibration data are required for each orientation. Extending

this result, we can see the potential for even a larger error when gage

data from one loading condition are used for a different loading condition.

In conclusion, the results of the matrix stress rotation experiments

show that tile resistance change ratio for the two orientation is in

reasonable agreement with the ratio of stresses normal to tile major foil

surfaces. However, separate calibration curves are needed for the

The average measured values are higher than tihe calculated values.
tBecause our gage configuration and construction is different from tlat
of Cinsbe rg et al., the use of their data cannot be justified for an
absolute calibration. However, their data are suitable for comparisons.
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two orientations. More experiments of the type presented here are required

to provide confirmation of present results at other stress levels and to

examine the development of a stress gage for measuring lateral stresses

in uniaxial strain experiments.

4.2 EFFECT OF STRAIN STATE ON FOIL RESPONSE

The precise form of the strain state in a foil has generally not

been considered in shock calibration experiments. However, a uniaxial

strain state is often assumed because: (1) the width-to-thickness

ratio of the foil is large, and (2) the compressibility difference

between the foil (particularly Yb) and the surrounding epoxy is small.

To determine the validity of the one-dimensional strain approximation

and to measure the true one-dimensional strain response, we conducted

shock experiments on piezoresistance foils of several different widths.

Because the lateral boundaries influence the final strain state in the

foil, a sufficiently wide foil will initially be in uniaxial strain

compression, whereas a narrow foil will rapidly be in biaxial strain

compression. We can determine the effect of foil strain state by

comparing the time-resolved piezoresistance response of both foils to

a rapidly rising stress pulse in the matrix material.

The experimental configuration of these experiments is shown in

Figure 4.3. Three foils, each of 0.005 cm thickness, were cut in four

terminal arrays, as shown, from one large piece of foil. The widths of

the gages were 0.05, 0.32, and 2.54 cm, respectively. Each was bonded

with Hysol 815 epoxy in milled grooves and the specimen assembly was

completed as described previously to ensure good lateral (edge) contact

to the PM1thA.

Resistance measurements were made by pulsing each foil with constant

currents of equal current density (A/cm-) in each foil and observing, the

time-resolved voltage developed across a section of the foil. Currents of

.100 A were used in the 2.5-cm foil to obtain adequate signals. Stress

amplitudes of -0.2 GPa and 0.5 GPa in the PMTI matrix were chosen to

optimize the experimental conditions.
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Ytterbium Foils
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FIGURE 4.3 UNIAXIAL AND BIAXIAL STRAIN CONFIGURATIONS

Contacts to Ytterbium foils are 0.005 cm thick copper foils
soldered to vapor deposited copper tabs on Ytterbium.
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Initial and average resistance changes obtained in three experiments

are shown in Table 4.2. It can be seen that the ordering of response is

not consistent; that is, changes in resistance do not correlate with width.

In two of the experiments (0.2 and 0.55 GPa), the narrow foils responded

essentially the same. In the other (0.48 GPa experiment), they differed

substantially (_24%). With the exception of the one value for the 2.54-cm

foil at 0.55 GPa, all points are considerably lower than the data of

Ginsberg et. al.
2 1

The time response results are shown in Figures 4.4, 4.5, and 4.6.

Here again the results are inconsistent. At the lower stress level, 0.2

GPa, considerable noise obscures the data; however, the average values

of the narrow foils are essentially the same. (Data for the 2.54-cm foil

were not obtained because of equipment malfunction.) In the 0.48-GPa

experiment, all foils exhibited no change with time (within the precision

of measurement, -2%). However, in the 0.55-GPa experiment (Fig. 4.6),

the widest foil showed a decrease of -12% with time.

A comparison of our shock compression data with those of Ginsberg
21

et al. is shown in Figure 4.7. Our data indicate considerably lower

values of resistance change for a given stress in the matrix than those

in Reference 21. We have not been able to account for this difference.

We conclude from these experiments that:

(1) The values measured for the narrowest foils in our work
are consistently lower than those for similar foils in
previous work. 2 1 These differences are beyond the experi-
mental scatter and may be due to differences in strain
states and/or differences in foil material.

(2) We cannot detect an influence of houndaries for Ytterbium
in PMMA. It should be noted that these materials do not
differ substantially in compressibility. A larger
difference might be obtained with a greater mismatch.
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FIGURE 4.4 RESISTANCE CHANGE VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.2 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same.
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FIGURE 4.5 RESISTANCE CHANGES VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.48 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same.
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FIGURE 4,6 RESISTANCE CHANGES VERSUS TIME FOR YTTERBIUM
FOILS (Stress of 0.55 GPa in PMMA)

The foil widths are indicated in the figure.
Other dimensions were the same,
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FIGURE 4.7 MATRIX (PMMA) NORMAL STRESS VERSUS Yb. RESISTANCE CHANGE
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4.3 EFFECTS OF SHEAR LOADING

In field tests, shear deformations may be induced in piezoresistance

gages. These deformations can result from non-normal incidence of stress

waves or from shear waves in the test medium. An examination of the

piezoresistive theory presented in Section 2.1 shows that shear stress,,s

should not induce a change in the resistivity. This result is due to the

form of the piezoresistive matrix and because of coincident current and

electric field vectors (see discussion in Section 2.3). ttowever, the

presence of shear stresses in the foil can alter the compressive stresses

due to plasticity and can, therefore, change the resistance measurements.

To examine the above effect due to shear deformation, we conducted

combined compression and shear experiments on ytterbium foils embedded

in PiPtA. The gage emplacement is similar to that described earlier in

this section. Gage foils were aligned so that the applied shcar stresses

were along the gage length and the gage width, as shown in Figure 4.8.

The technique for producing combined compression and shear loadin g

is described in the paper by Gupta el al. 47 and is shown in Figure 4.9.

Paraillel, inclined plates are impacted to produce compression and sh;Ir

waves in the specimen. Iecause of wave separation in the specimen interior

(dute to wave velocity differences), the response of the piezoresistance

gages can be obtained for each wave.

The response of the PMMA under combined compression and shear load-

ing, using particle velocity gages, has been determined independei t-tlv by
39

Gupta. We have, however, conducted one experiment using particl

velocity gages to determine the shear stress across tilt interlate aind tiet,

precise wave a rrival tLimes for the experimental config ir ition of intr.- t

to the present work. This experiment was similar to the piezore,,ist a ce

target assembly shown in Figure 4.8, except that a part i cI e-w'Iot itv

gage was substituted I-or the piezoresist;nce, gocs,.
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MP-8324- 18

FIGURE 4.8 FOIL CONFIGURATION IN SHEAR LOADING EXPERIMENTS
(View from impact side).

For gages 2 and 3, the direction of shear is along the length;
for gages 1 and 4, the direction of shear is along the width.

58



Uproj
MA-5746-2C

FIGURE 4.9 SCHEMATIC VIEW OF EXPERIMENTAL TECHNIQUE TO PRODUCE
COMPRESSION AND SHEAR WAVES

The X, refers to the laboratory system; X, refers to the coordinate
system fixed on the impact plates.
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The data from this particle-velocity gage experiment are shown in

Figure 4.10. These consist of a voltage-time profile at the impact surface

(PVI) and in the specimen interior (PV2) at a plane equivalent to the Yb

foil gage experiments (-0.51 cm from the impact surface). The experi-

mental setup was designed to provide signals only from the shear wave.

However, the errors in the magnetic field alignment and finite impact I
tilt cause a small signal from the compression wave (the small precursor

in the PV2 profile). Because there is no separation of waves at the

impact surface, the impact surface gage (PVI) shows no such precursor.

An analysis of these data gives the following results

Wave separation = 1.47 ps

Compression stress = 2.7 kbar

Shear stress = 0.34 kbar.

These results show that a considerable shear stress is transmitted

through the specimen interior.

Results from the piezoresistance gage experiments are shown in

Figure 4.11 and 4.12. As can be seen, there is a considerable amount of

scatter for a constant stress input. The results in Figure 4.11, however,

show a discernable change upon shear wave arrival. The results in

Figure 4.12 are not as clear. Average resistance values for intervals

corresponding to the compression wave only (<1.47 ms) and to combined

compression and shear (1.47 to 3.1 ps) are shown in Table 4.3. The

average increase in the resistance change is -10% in the first experiment

and _2% in the second. The first value is larger than the exp-rimental

uncertainty, whereas the second value is well within experimental

uncertainty.

The results of our experiments indicate an effect of shear stress

on the gage response. Unfortunately, because of the lack of reproducibility

in the data, the conclusions cannot be considered definitive.

The compression stress was calculated using the jump conditions and bY
writing the particle velocity as one-half the longitudinal component of the
projectile velocity. The shear stress was also obtained by usin,, the jump
conditions. The measured shear wave and particle velocities were used.
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FIGURE 4.10 PARTICLE-VELOCITY DATA (voltage versus time profile) FOR AN IMPACT
SURFACE AND INTERIOR GAGE UNDER COMBINED COMPRESSION
AND SHEAR LOADING

The small precursor in the PV2 signal is caused by the longitudinal wave.
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FIGURE 4.11 RESPONSE OF Yb GAGES TO COMBINED COMPRESSION AND SHEAR LOADING
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FIGURE 4.12 RESPONSE OF Yb GAGES TO COMBINED COMPRESSION AND SHEAR LOADING
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4.4 SUMMARY

The experiments described show that the mechanical variables considered

in this work influence the gage response. Unfortunately, the lack of

reproducibility in the results described in Sections 4.2 and 4.3 does

not permit firm conclusions regarding the effect of strain states and

shear deformation. More work is needed to clarify these effects.

The experimental results from matrix stress rotation show that the

gage responds primarily to the stress normal to its major surface.

Furthermore, the calibration for gages in one orientation is not

applicable to the other orientation. This raises the question: How can

we explain or model the response of the gages in the two orientations?

In the last section we assumed continuity of normal stress and a

particular strain state to derive the resistance change of gages

oriented in the usual orientation (designed to measure longitudinal

stresses). Similar assumptions cannot be used for the other orientation

(designed to measure lateral stress), because it is difficult to determine

the stresses and strains in the foil. The answer to the above question is

obtained by modeling the gage as an inclusion in the matrix, as described

in Section 5.
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SECTION 5

DETERMINATION OF GAGE RESPONSE

In the previous sections we have shown that determination of the

resistance change of a gage element requires the knowledge of stresses

and strains in the gage. The analyses in Section 3 were performed by

assuming one stress component in the gage and by assuming a particular

strain state in the gage. Although these assumptions are plausible,

they are not rigorously justified. Also, they do not provide insight

for a different loading situation, such as rotation of matrix stresses,

as described in Section 4.1. Here we take a different approach: we

determine the gage stresses and strains (hence resistance) by modeling

the gage as an inclusion in a matrix and then solving the corresponding

boundary value problem.

The analytic solutions presented are based on the Eshelby solution
48

for an ellipsoidal elastic inclusion in an elastic matrix. We have

extended this solution to an elastic-plastic inclusion in an elastic

matrix because the elastic inclusion solution is shown to be incorrect.

Solutions for both loading and unloading have been obtained. Effects

of gage aspect ratio on resistance change have also been examined. Before

presenting the solutions, we discuss the applicability of the analysis to

the experimental situation.

The experimental results given in Section 4.1 are used to check our

theoretical analysis. In these experiments, the principal stresses in

the matrix had different orientations with respect to the gage. We will,

therefore, determine how well the present analysis can simulate the measured

66
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resistance change ratios for tile two different orientations. This simu-

lation is a better test of the theory than an absolute prediction for a

single orientation because the constants ((x, ( , and ri in Section 2) are

not very accurately known. By comparing the ratios from two different

orientations, tile accuracy requirements on the constants are somewhat

reduced. The use of experiments in Section 4.1 also ensures that the

matrix is elastic (although the inclusion may be plastic) as required

by our theoretical analysis.

The theoretical analysis ignores any dynamic effects such as scatter-

ing of the stress wave by the inclusion. We have assumed that the gage

is always in equilibrium with its surroundings. We are, therefore, solving

a static equilibrium problem for an imposed deformation in the matrix.

5.1 ELASTIC INCLUSION SOLUTION USING THE ESHELBY TECHNIQUE

The solution to the general problem of the stress field determinaition

due to an elastic ellipsoidal inclusion in an elastic matrix was described

by Eshelby in 1957.4 8 A brief discussion of the Eshelby technique and its

application to our experimental situation is given below.

Figure 5.A shows an inclusion, bounded by a surface 5, in an infinite

matrix. We wish to determine the stresses and strains in and around the

inclusion for a matrix strain imposed far away from the inclusion. Two

basic assumptions in Eshelby's work are: (1) linear elastic response for

the matrix and the inclusion, and (2) continuity of tractions and displace-

ments across the matrix-inclusion boundary; that is, the inclusion and

matrix are welded across the surface S. Eshelby's solution procedure is

based on an application of the Green's function in an elastic medium.

The solution consists of two parts and includes tile steps indicated next.

This work was done in collaboration with Prof. C. E. )uvall.
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FIGURE 5.1 A SCHEMATIC VIEW OF AN INCLUSION BOUNDED BY A SURFACE
S IN A MATRIX

The traction vector normal to the surface is shown.



First, the transformation problem is solved. In this problem the

'inclusion' bounded by S is homogenoLs ; that is, it is the same material

as the matrix. The intent is to determine the elastic state of the matrix

and the homogenous inclusion when only the inclision is subjected to an

arbitrary homogenous strain. The constraint provided by th remainder

of the matrix gives rise to the stresses. In arriving at the so]ution

of this problem, Eshelby considered the following hypothetica] steps.

Make a cut along the boundary surface 'S' and impose the stress-free

homogenous strain T on the incI usion. The region bounded by S can no

longer fit in the matrix and surface tractions T are needed to restore

the strained inclusion to its original shape and size

}T
T - , r.N (5.1)

T T

where = H

H represents the elastic constants and N defines tht' normal to the

surface S. if the inclusion (strain-free but not stress-free) is now

put into the matrix (stress-free and strain-free) and welded across the

surface S, then there is a body force of magnitude T spread over Lthe

sur face S. To ;annul this force, impose a distribution - + * N n

the siirkface S. This force produc's a displacement field u (r). h'leI

stresses and strains in the matrix and inclusion can then be writtn

using the elastic constants (,' and G).

( ij =i= 1/2 .+

Matrix ( 2

c 2( 2G,
i mm i j i j

it i)

SI s

Not(-, i ; h inc l t ()

Note, c s , tl t ionl of jm.<- I Ii'l1.
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The inclusion stress term takes into account the tractions that were

required to bring the inclusion back to the original size and liape.

Knowledge of u. is the main step in determining the stresses and strains.i
Using the Creen's function for an elastic medium, Eshelby derived the

displacement field due to the forces 0 N applied over the surface S,
T T

in terms of o and , as follows:

T
o

c (X) _j dV +
u -W 16'ri't(l-v) 2 ijk

T

8jk f dV () (54)811 (i1-V) f -2 gijk Mk54
r

where fijk = (l-2v) (6 ij k + 6 ikZ) - jk i + 3i9j k

gijk =  (1-2\)) (ijZk + 6ik Zj jk i) + 3Vi j k

r and Z = (k 2, 29 Z3) are the length and direction of a line drawn from

dV to the point of interest, and v is Poisson's ratio. For an ellipsoidal

inclusion, Eshelby showed that the above equations can be rewritten as

c T (55)
ij ijk9 .k9.

where S ijk depends only on the Poisson's ratio of the matrix and the~ik.* T
shape of the ellipsoid. Because k is uniform by definition, it fol lows
that ,c is also uniform within the inclusion.

ij

The solution of the transformation problem i-s used to solve the aictn;al

problem of interest: The inclusion and the matrix have different properties
A .

and an external strain , is imposed at infinity. To solve this probicin,

replace the act ual inhomogenous inclusion by an equivalent liomogenous

inc I us ion. The solution to this equivalent homogenous inclusion problk m
A. . A

under external strain f is obtained by superposing on the strain

state of the inclusion and the matrix in the trans formation problem.

Although Equation (5.5) appears to be simple in form, the, calcilation ol
S is quite cumbersome.
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Thus, the stresses in the 'equivalent inclusion' are

inc. A T) 5
0 H - (7C + A(5.6)

In the actual inclusion (elastic constants H'), the strains
c + A give rise to a stress

inh. c A (57)
( H (cc +~ (57

inc. inh.
If ( = 0 , then the equivalence with the homogenous inclusion

is complete. We, therefore, write

H • c + A H • c A T (5.8)

whe re
c S T

T c AEquations (5.5) and (5.8) can be solved for i and c in terms of

For example, eliminating rC between (5.5) and (5.8) gives

(Ii T A"- H) •S + I • = (H - H)

Solution of the simultaneous equations represented by Equation (5.9)
T c

give , which is then used to obtain L from Equation (5.5). Stresses

in the matrix and the inhomogenous inclusion are determined from Equations

(5.2) and (5.7), respectively. (In using Equation (5.2) it is necessary

to add %. to o ).

Ini the experiments we are simulating, the gages were a rectangular

par.alle I pipe, d with dimensions: 2.5 cm by 0.2 cm by 0.005 cm. We make

the following assumptions:

(1) For the times of interest, the gage length can
be taken as infinite.
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(2) The rectangular cross section 0.2 cm by 0.005 cm can be
replaced by an elliptical cross section such that the
area of the ellipse is the same as the rectangle
(0.2 cm by 0.005 cm) and the axes have a ratio of
40 to I.

(3) Nonlinearities in elastic constants are ignored.

Because of the infinite length, we have a plane strain problem and

the strain fields are as follows

A A A
- 1 2 0)

c c'c " (c c' 0)
1 2'

T T T T
" c 1 2 3 (5.10)

Note that r can have alI three components non-zero in the theoretical

formulation. The stresses in the inclusion can be written as

c A C A
0) + 2' G t C I)' + o- ) + A 1 + 21 1 1 1 1 1 2 '

A ( c + A + ( + 2 G )(,c + A)
KI 1 t 1 2 2

' % " A c A )

1 +  I +  2 2A (2.11)

where 'and GCI are elastic constants for the inclusion.

In our experiments we are considering two cases:

Case I: The applied strain is one dimensional and along

the gage thickness direction: i'A. (The conVention for the

axes was given in Section 2.3).

Case II: The applied strain is one diLensional an d ;long

the gage width direction: A

The semi-major and semi-minor axes are then 0.115 cm and 0.00287 cm,
respect ive ly.

i s fi tt ing parameter that matches the stresses in tle

actual and the equivalent inchision.
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The resistance change, ignoring the changes in stress-free resistivity,

can then be written as

AR3  A c
Cas A C 12L+ iCase I R 12 (1 o 2 + il Y3 2 1 2 (5.12)

0

AR3  A c c
Case 1 R-- 12 ( + o + 1 3 - 1 - 1 - 2 (5.13)

R

We have used 1i.. instead of a, f (see Eq. 2.7). The values for theseij

constants were taken from the work of Grady and Ginsberg on Ytterbium
30

gages.

The procedure for evaluating AR/R in Equations (5. 12) and (5. 1 3) is
A 0

as follows. F is determined from experimental data on the matrix

material . Equation (5.9) is used to evaluate , and Equation (5.5)
c

is then used to evaluate These results are used to evaluate stresses
A

in Equation (5.11). The stresses in conjunction with A and c giv .R/R 0

The ratio for the two cases is given as

(p) p.) 2.1 (5. 14)

where we used the following elastic constants

Yb: K = 14.8 GPa; G = 7.25 GIPa

PM A: K = 6.02 GPA; G = 2.25 GPa.

This is the same as assuming ri = 0 in Equa tLion (2.12).

Thlie matrix material (PMMA) has been very well cliaracterized uhnder
shock loading. 38

The constants for Yb are taken from Re f,' rene 30. PIA constants i:-(,
taken from Re ference 39 and ref lec t the moduli appropriate at high
strain rates.
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The above result is clearly in error, because the experimental

measurements give a value of 0.64 t 0.06. Examination of the various

steps in the calculation showed that the large difference in the theory

and experiment could not be ascribed to errors in constants. The main

error was due to the large stresses resulting from the stress concentration

in Case II. (The stresses and strains for these calculations are discussed

in the next subsection.) These concentrations are a consequenct, of thte

aspect ratio. Simple buckling calculations showed that elastic hcklin.

could not occur for our problem and, therefore, could not explain our

experimental results.

The difficulty with our stress solution is that it does not iccount

for gage plasticity. The incorporation of plasticity should dramatically

alter the stresses because the stress differences have to satisfy the

yield condition. The extension of the solution to an elaostic-plastic

inclusion is considered in the next subsection.

5.2 MODELING THE GAGE AS AN ELASTIC-PLASTIC INCLUSION

The Eshelby solution can be extended to an elastic-plastic inclusion,

as described !)elow, and the results can then be used to calculate tile

resistance chrnge 'or the two orientations.

In the Eshelby solution for an elastic inclusion, the inhomogenous

inclusion can be replaced by an equivalent homogenous inclusion provided

we satisfy the stress equivalence in Equation (5.8).

H • ( ' + A) H * ( + A T

Fhe right-hand side is tie stress in tle, equivalent inclusion aid l rcfers

to the matrix elastic constants. The left-hand side is the stress in tie

actial inclusion. For an clastic inclusion, Ir art, elastic constants.

In general, however, there is nothing in the theoretical formalism i thit

restricts the form of the left-hand side provided tlh stress equivalI ence
40

is satisfied. We can therefore choose any constitutity re lation for tlit,

inclusion. Another way of explaining this result is as follows: The

strains developed in the actual inclusion are such that tl constititiv
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relation for the inclusion and stress equality with the equivalent

inclusion are simultaneously satisfied. To avoid confusion, we rewrite

Equation (5.8) as

H (c + fA) H •c + A _ T) (5.15)

The tensor H' no longer represents the elastic constants. Instead, it

relates the stresses and strains of an elastic-plastic body.

The constitutive model used for the gage is the same as that presented

in Section 2.2. The elastic constants for the PMMA and Yb are taken to

be linear with the same values as in the previous calculation. The yield

function for the Yb is a von-Mises yield law expressed as

Y = 0 (5.16)
0

where Y 0is taken to be 0.45 kbar. Because of a lac'k of existing data,

work-hardening is not included. The calculations are carried out

incrementally in 100 steps to a peak strain of 5.9% (corresponding to

experiments in Section 4.1). The procedure consists of performing an

elastic calculation until the onset of yield. On yielding, the

increment is further subdivided to accurately obtain the matrix strain

corresponding to yielding. On yielding, the modulus tensor is redefined

and the appropriate stresses are obtained. The procedures during loading

and unloading are similar; that is, each incremental calculation is first

performed elastically and if yielding occurs, it is taken into account.

The results of the resistance change calculation as a function of

matrix strain for the two orientations are shown in Figure 5.2. For

comparison with our experiments, only the peak values are of interest.

The total stresses and strains at any instant are obtained by adding,
the increments to the previous value.
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FIGURE 5.2 CALCULATED RESISTANCE CHANGE OF Yb GAGES (MODELED AS

ELASTIC-. LASTIC INCLUSIONS) VERSUS MATRIX STRAIN

The response shown in this figure is for gages with major surface normal to

shock propagation direction (I) and major surface parallel to shock propagation

direction (11).
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The calculated ratio at peak strain is

A -- 0.63 (5.17)

This result is in good agreement with the measured resistance change

ratio (0.64 + 0.06). We emphasize that the closeness in the agreement

is fortuitous because the constants are not very well known. The main

result of this calculation is that by modeling the gage as an elastic-

plastic inclusion, we can predict the resistance change reasonably well

and can, therefore, understand the gage response.

Further discussion of the resistance change calculations (Figure 5.2)

will be presented after an examination of stresses and strains in the gage.

Table 5.1 lists the stresses and strains in the inclusion (gage) and in

the matrix (far from the inclusion). For the gage, we have also shown,

in parenthesis, the stresses and strains for the elastic inclusion solution.

In Case I, the stress normal to the major surface of the gage (inclusion)

is equal to the matrix stress in that direction, with the other stresses

for the plastic case being determined by the yield condition. The gage

strain state, though different from the matrix strain state, is largely

uniaxial (t 2/b1 = 28.3). The strain along the X direction is a consequence

of two competing effects: the large aspect ratio of the inclusion that

tends to reduce it, and differences in the mechanical impedance between

the inclusion and the matrix that tend to increase it. The elastic solution

for Case I shows an identical normal stress, but the other stresses are

considerably smaller in comparison to the plastic solution. The inclusion

strains are also smaller for the elastic case. Thus, the elastic solution

gives a lower AR/R for this orientation.

*
In fact, the individual resistance change values differ by about 1W2.

This calculation rigorously proves the assumption that the normal stress
is the same in the gage and the matrix.
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Tlb I~ c . I

SITRl-SS ES AND) ST1RA INS IN iff-' MATUXI AND) THE CAGEI

Maitrix Mat rix (Gage' G, i g
Stre trI St res Stra inii

Case Direction khr)()(khar) (

Ix -2.68 U 4b .12
(-2.29) (-.5

X") -5. 1 4  -592 -5.38 -3.4
(5.37) (-2).17)

x 3 .~80-4.59 0
(-2. 22)

IL x -5.34 -5.921 -3.54 -6.07
1(-12.24) (-5.55)

X,) -2.68 0j -2. 7 4.04
(-2.73) (1.1)

X3 -2.68 0 -2.84 (3
(4. 3T3)

Tensile stresses and strain,; are conisidered positive. The values ini t he

parenthesis refer to the ci astiC iel us ion sol ut ion dl iecnssedl in
Subsec t ion 5.1 .

These directions refer to the, gage: Length is- alonig X, width alonlg' \I
and thickness along X,,. 3'

tThe use of nonlinear elastic' constants Will OW giethCor rec t va 1 ne

3.05 kbar.
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For Case i, the stress normal to the major surface of the inclusion

is again equal to the matrix stress in that direction. The other stresses

(determined by the yield condition) are no longer equal because of the

stress concentration effect due to gage geometry. The strain states for

this case are quite complex, with compression in one direction and tension

along the other. For the elastic solution, the strains are smaller, but

they have the same sign as the plastic solution. The stresses, on the

other hand, are very large due to stress concentration and give rise to

a large resistance change for this orientation. The large stress values

are responsible for the incorrect ratio obtained in Section 5.1. The

development of tensile strains in Case II is an interesting result that

should be examined experimentally.

The above results show that the stresses along the normal to the

foil are equal to the matrix stresses because of the large aspect ratio

(40 to 1) of the foil. The strains, on the ether hand, cannot be pre-

dicted as easily. In the experimental situations considered here (uniaxial

strain in the matrix), the contribution of the strains " quite small and

the stresses dominate the resistance change. This is not true in general.

The plot shown in Figure 5.2 (resistance change versus strain) is

the plot that would be generated by a series of experiments having

different matrix strains. It is important to note that yielding for

the two orientations occurs at different matrix strains. In the elastic

range, the resistance change for Case II is higher than in Case I. This

result is contrary to a simple em mjrical usage of the gage and needs to

be examined by experiments in the low strain range. The straight line

form of the results is a consequence of ignoring the nonlinear material

properties. On unloading, the usual orientation (Case I) gives rise to

hysteresis. This hysteresis is purely due to non-zero stresses and

strains in the gage because changes in stress-free resistivity have not

been considered in our calculation. The unloading for Case II is more

complex and the arrow marks the spot where one of the gage stresses

becomes tensile. The resistance change results below that strain level

ir, probably not realistic because the foil may separate from the matrix.

',re, work is needed to better understand the solutions for unloading in
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We can also use this analysis to examine the effect of gage aspect

ratio (width-to-thickness ratio) on the gage response. To compare the

output of the wire gages with foil gages we performed the calculations

for a circular cross section. The calculations were done for Yb., keeping

all other gage and matrix variables the same as the elliptic cross section.

For the circular inclusion, there is no effect of matrix stress rotation

(as expected), and we obtained a value of (AR/R) = 0.29. The resistance
0

change for the elliptic inclusion (Case I) was 0.32. We can therefore

conclude that the wire gage would show a lower resistance change in

contrast to the foil gage.

The results for Manganin are expected to be similar and should quali-
17

tatively explain the lower value of Lee's results in comparison with the

18
results of Barsis et al. as discussed in Section 3.1.

5.3 SUMMARY

By modeling the gage as an elastic-plastic inclusion and using the

phenomenological model developed in Section 2, we can predict the response

of piezoresistance gages. The results from the analysis presented in this

section can be summarized as follows:

* The changes in the gage response to rotations in the stress
components in the matrix were correctly predicted.

0 The simple empirical relation used for piezoresistance gage
calibration under shock loading is shown to be a consequence
of the gage plasticity and the gage-matrix interaction.

0 The theoretical basis for developing a lateral stress gage

has been presented. Further work needs to be done to under-
stand the unloading response of a gage used for lateral stress

measurements.

* For the experimental situations considered, the total strain

(or dimensional) contribution to resistance change has been
shown to be small.

* The present analysis permits an assessment of the foil aspect

ratio on the gage response.

We remind the reader that the assumption of displacement continuity at
the inclusion-matrix boundary is inherent in the analysis. Although
this assumption is quite restrictive, the state of matrix strain coupled
with gage plasticity reduces its importance for our work.
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SECTION 6

DISCUSSION AND RECOMU4ENDATIONS

The analysis presented in the Section 5 completes our solution

to the direct problem; that is, we have successfully modeled the gage

response to an imposed matrix deformation. The results show that the

important variables in understanding the gage response are gage plasti-

city and the gage-matrix interaction. This latter variable takes into

account matrix strain and gage shape. In this section we first discuss

the various assumptions made in our gage-matrix interaction analysis.

Next, we examine the implications of our results to the measurement of

stress in a complex loading situration, namely, divergent flow.

We assumed the gage length to be infinite in our calculations.

This assumption is not necessary for solving the problem and is made to

facilitate the calculations (determination of S in Eq. 5.5.). The

assumption is reasonable given the length-to-thickness ratio (500 to 1)

and the times of interest in shock wave measurements. For a truly static

problem, the effect of finite length needs to be examined.

The gage cross section is taken to be elliptical in our calculations.

There are two potential difficulties with this assumption: (1) Initially,

the gage has a rectangular cross section, and (2) the effect of the stress

wave on the gage shape is not considered. Replacing the rectangular

cross section by an elliptic cross section seemed reasonable for the large

aspect ratio of our work (40 to 1). To rigorously examine the validity

of this assumption, finite element calculations were performed with an

elliptical and a rectangular cross section. Except for the edges along

the larger dimension, the stresses in tle inclus ion were the same I-or

* 5

These were performed by Dr. L. Schwer of SRi using the NONSAP code.

"There were 160 elements along the larger dimension and only the 5

elements on each end showed significant derivations.
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the two cases. The results of these calculations just if ied our use of

the elliptical inclusion. The distortion at the edges is not considered

important because of the stress wave effect discussed below.

Using a static boundary value analysis for a dynamic problem

ignores the distortion to the gage shape due to the incident shock wave.

Hence, the exact shape of the gage after the shock wave has traversed

over the specimen is not known. Although we do not believe this effect

would make a large contribution, we can neither prove or justify this

statement. Future work should attempt to determine tho. contribution

from gage distortion.

The results from our work show the difficulty in inverting gage

data (a scalar measurement) from an arbitrary loading situation. In

fact, it is reasonable to say that the resistance change data, without

knowledge of some other parameters, would be impossible to analyze. This

then brings up the question: How can piezoresistance gages he used in

more complex situations, such as diverent loading? To make such meas-

urements, two aspects of the problem must be addressed: Determination

of the gage constants (, , , ) indicated in Sectl-on 2, and examination

of the gage package-matri: interaction.

A determination of the gage constants is necessary to interpret the

gage data. If the constants are known, then the gage calibration is

more general and we do not have the difficulties encountered in analyzing

the data of Section 4.1. This determination requires gage measurements

for several strain paths in the matrix. If the stresses are low enough,

then the gage responds e lastically, and this permits determination of

ci and (3. Plastic deformation of the gage and relating the plastic work

to change in the stress-free resistivity can provide 11. This latter

mc,.i.surement, though not simple, needs to be attempted for at least one,

il , c type to complete our understanding of piezoresistance gages.

This was pointed out by Dr. M. Cowperthwaite.
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The other aspect of the problem concerns gag, e-matri x interact ion

for tile specific loading situation. To use these gages effectively, onW

must know the state of strain in the matrix and have some idea of the

matrix response. Analyses can then be performed to determine the gage

response sensitivity to various matrix material property pairameters.

Such calculations can provide the optimal gage package shape and determine,

the parameter that dominates the gage response. For example, ill tht uni-

axial strain experiments discussed in this report, the di mensionl

terms had negligible contribution, For divergent flow, this is not true

and the contribution of the dimensional changes needs to he assessed.

low effectively a nonpiezoresistive material can he used to assess stra ins

in the gage itself can also be examined by performing a gage matrix

interact ion analysis.

The gage matrix interaction analvsis is also important for eva lIuati ng

tile effect of the gage package on the matrix stresses in the vicinity of

tie gage. The presence of tile gage can induce vie-lding or oth.r re-

arrangement of stresses near the gage.

In conclusion, piezoresisizaCe gages CaIn be use-d ill compleCx loading

situations provided gage constants are evalu;ted and ga.ge matrix inter-

action analyses are performed to ensure that the mes ireient s c;In inde td

be inverted to determine the stresses of interest. Simil r remarks apply

to the development of st rain-compensated gage packages.

Also see distussion at the end of Section 2.
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APPENDIX A

ELASTIC-PLASTIC RELATIONS

In this appendix, we derive the equations relating stresses and

strains that are used in Section 3. The elastic-plastic model used in

deriving these equations is presented in Section 2.2. The relations

presented here are for I- and 2-strain states in the material (assuming

small strain). A detailtd discussion of elastic-plastic relations for

1-D strain is given in the paper by Fowles.
5 1

One-Dimensional Strain 0 0 0, c = ) = )

This strain configuration has been extensively studied in shock

wave studies. In the elastic region, we have the stresses

ox = (e +x x

(A.1)
= =

y z x

Using the von Mises yield condition, we can write the compressivc

stress at yield as

SHfI F = yO V--2 (A.2)
P X, Y I 2

where ., ji, and 'v are elastic constants; Y is yield stress in simple

tension; and PHEL is the Hugoniot elastic limit. Beyond the eliast i c
x

limit

P - .3
x 3

where 11 is the mean compressive stress and Y is vield Stress in simple

tension. Thus, in the plastic range the compressiwV, stre.ss , is ofifset

by 2Y/3 from the hydrostat. For perfectly plastic solid, Y yc.

P's denote compressive stress as positive.
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Two-Dimensional Strain (x F 0, = 0)
__ y z

For this strain configuration, we have the stresses

a = X(,e + _e) + 211ex x y x

a = (,e + Ee) + 2W e (A.4)y x y y

= AO + C)z x y

Combining the above equations, we obtain

0 0 - Gmm x z (A.5)

x 3 3

and

a - ~ (a - a ) (A.6)x x z

Using the von Mises condition, we have at the yield point

P HEL (I) Yo (A. 7)

and
1 oJ (A.8)

P - P = A8x 3

Here the pHEL corresponds to the compressive stress at yield for tli,
x

two-dimensional strain configuration. Y represents yield stress in

simple tension. By eliminating V between Equations (A.2) and (A.7), we

obtain

P 2P - Y (A.9)
XO Xo

21)
where P = compressive stress at yield in a two-dime'nsional cunt i .irat ion.

XO

P = compressive stress at yield in ; on,-d ine(ns ional ('0)on igi rat ln.
XO

86



Equation (A.9) gives the compressive stress at yield for two-

dimensional strain. Because PID - Y0, the HEL in two-dimensional strainXO1

is higher than that in one-dimensional strain. The offset between the

mean stress and P is Y/3--that is, half of the offset observed in the
x

one-dimensional strain.

Using the equations presented in this appendix, we can compute

the mean stress or pressure corresponding to a compressive stress for

the one- or two-dimensional strain configuration.
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APPENDIX B

DIMENSIONAL TERMI FOR SIMPLE LOAD) PATHS

Thle dimensional term in Equation (2.12) can he e xpressed in te-rms

of density changes using the small strain approximat ion. The trace of

the strain tensor is expressed as

mim 0 o~- 81

Hydrostatic Loading 011 ' 22 ' 33)

1 + 1= 1I - m ( 2 )

( 22 ) ( 3 ~3) (1 +3m

S/ 1/3 1-1/3 ThTfl

H o V mm 3

The equivalence of (B. 2) and (13.3) allow~ the dimensional term for

hydrostatic loading to he expressed as Gj H/0 ) 1/3

One-Dimensional Strain (F1 '3 0, 22 #0)

1 + -r /r(B.4)
(+ 22 ( + 1 33 + imol oI

Two-Dimensional Strain 11 '22 1 0, 33 0)

+22 + 33 + mi

In Eqiia tions (B. 3) through (B. 5) , the dens i ty in the st ra ined

material refers to thet density for that particular loading.

'rh is is using ain Elu le an strain meCasure and noting that stra in is
positive in tension.
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APPENDIX C

RESIDUAL RESISTANCE UPON LONGITUDINAL UNLOADINC

Presented below are the equations needed to compute the residual

resistance upon longitudinal unloading from a plastic state. The rela-

tions are for one- and two-dimensional strain states and use the small

strain approximation.

The residual resistance change can be computed using Equation (3.4)

in Section 3.

AR 3

0R - 3n (on + G3  (C.1)

For uniaxial strain loading (11 j 0, '2 '3 0 0), Equation (C.1) upon

longitudinal unloading becomes

AR 3)ID

R )= 12 02 + IT1103 '1 (C.2)
0Res .

For two-dimensional strain I = '2 1 0, t 3 0), Eqnation (C.1) upon

longitudinal unloading becomes

2D

( A 3) 0 L)3 - I + ( . 3

Res.

The stresses and strains appearing in Equation,; (C.2) and (C. 3) arL

determined from the elastic-plastic rel;tions prcscnt in Appendix A. A

graphical representation for the loading and unloading paths is shown ill

Figure C.I. Various stress components as a function of volume, st ra in

for one- and two-dimensional strain have been shown anod are c xpllincd

next.

The curves shown are for Yb.
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For one-dimensional strain loading, OABCD represents the longi-

tudinal stress-strain path. Points A and C mark the onset of yielding.

The lateral stress-strain path corresponding to OABCD is marked as OEFGH

where the prints E and C mark the onset of yielding. The line OP repre;ents

the mean stress-strain path. By writing algebraic equations for these

lines, we can calculate the non-zero stresses and strains upon longitudinal

unloading.

For two-dimensional strain, we have shown only the loading path to

simplify the figure. OJK represents the longitudinal stress-strain curve

and OLM represents the path for the other stress. Strains corresponding

to J and L mark the onset of yielding. The mean stress-strain curve

stays the same as that for one-dimensional strain. As shown in Appendix A,

the yielding under two-dimensional strain occurs at a different strain

level, and the longitudinal stress offsets from the mean stress-strain

curve are smaller.

For an elastic-perfectly plastic solid, above a threshold strain

the residual stresses and strains are constant because the stresses upon

longitudinal unloading are limited by the yield stress. The calculations

performed here consisted of evaluating the threshold strain for one- and

two-dimensional loading. Below the threshold strain, a linear relationship

can be used to evaluate the residual stresses.
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